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Quantum theory of multiphoton lasers II. Systems without 
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School of Science, University of Waikato, Hamilton, New Zealand 

Received 6 May 1974, in final form 16 July 1974 

Abstract. Investigations into possible multiphoton laser systems are extended to a less 
restrictive class than considered in the previous paper. The loss mechanism for the light 
field is now taken to be a single-photon loss. These systems no longer preserve the property 
of detailed balance. However, approximate solutions to the laser Fokker-Planck equation 
may be obtained using a method recently developed by Haken. Explicit solutions are given 
for the stationary photon distribution for the two-photon laser. This exhibits similar photon 
statistics to the usual one-photon laser, with no significant increase in relative fluctuations 
at threshold. The results are equally applicable to multiboson lasers involving say the 
simultaneous stimulated emission of a photon and a phonon. 

1. Introduction 

The aim of this paper and the preceding one is to give a quantum-mechanical description 
of multiphoton lasers, that is, lasers in which the atomic lasing transition involves the 
emission of more than one photon. In the preceding paper (McNeil and Walls 1975) 
we examined a special class of such lasers for which detailed balance was satisfied. The 
loss mechanism for the light field in these lasers was multiphoton absorption of the same 
order as the stimulated multiphoton emission generated by the pumped atoms. This 
rather restrictive loss mechanism was introduced in order to preserve detailed balance. 

In this paper we consider a less restrictive class of multiphoton lasers which have a 
single-photon loss mechanism. Obviously detailed balance does not hold for such lasers, 
and this makes analytic solutions of the laser equations more difficult. However, we may 
obtain reasonable approximate solutions to the Fokker-Planck equation describing 
the behaviour of the multiphoton laser using a perturbation technique recently developed 
by Haken (1973a). This method has been applied so far to  interacting chaotic boson 
fields (Haken 1973b) and to the usual one-photon laser (Haken and Wohrstein 1973, 
Haken 1973~). 

We illustrate how this method is applicable to the general case of the multiphoton 
laser and obtain explicit solutions for the two-photon laser. We consider both the 
single-mode and two-mode cases and compare the results with the corresponding results 
for the usual one-photon laser. The results obtained are equally applicable to multiboson 
lasers involving the simultaneous stimulated emission of a photon and a phonon. 
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2. Model and analytical approach 

We adopt the same model for the multiphoton laser as described in paper I, except the 
loss mechanism for the light field is now a single-photon loss. Thus, in place of equation 
(12.5) the Hamiltonian describing the photon loss assumes the form 

HFRF = b r k  + bt r , .  

The density operator for the coupled atom field system obeys the usual equation of 
motion in the interaction picture 

where the operator A describes the irreversible behaviour incorporating the loss and 
pumping mechanisms. 

The quantum-mechanical operator equation (2.1) may be converted to a classical 
Fokker-Planck equation for the distribution function f ( u j ,  UT, U, U*, D) using standard 
methods (Haken 1970). The distribution function is related to  the density operator via 
the transformation 

f =  . " jexp[- i (x@f+ j x ~ j u j + ( * u * + ( u + : i D ) ]  j Tr(0p) j =  fi 1 d2Pj (2.3) 

The classical variables u j ,  U, D and their complex conjugates correspond to the 
quantum-mechanical operators as follows : 

uj * bj ; uf * b j  
u o s - ;  U* c1 S' 

D o 2 S , .  

u j ,  U; represent the amplitude of the field mode j ;  U, U* represent the atomic dipole 
moment, and D represents the atomic level population inversion. 

The resulting Fokker-Planck equation may be written, in the steady state, as 

L f = ( L , + L , + L , ) f =  0. (2.6) 

The operator L has been split up as follows : 

a d a 
uu2u3.  .. un-+uu1u3 .  .. U,-+ . . . + u u l .  . . u , , - ~ -  

au 1 a U 2  dun 

1 a a 
- D u l u 2 . .  . un-+2u*ul.. . U,--cc+ higher order derivatives in U'S 

a0 d D  
(2.7) 
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az 
j =  1 

(2.9) 

Lo represents the basic atom-field interaction. L ,  and L ,  represent the effects of the 
reservoirs. N is the number of atoms. 

q is the atomic phase decay constant. y l l  is the longitudinal relaxation time, with 

YIl = 0 1 2 + % 1 .  (2.10) 

Do is the atomic inversion due to pumping and incoherent relaxation processes from the 
atom-reservoir coupling alone, and 

(2.1 1) 

o12 and U,, are the reservoir-induced transition rates between atomic levels 1 and 2. 
K~ is the cavity damping constant for the jth photon mode, and iij is the mean photon 
number in the thermal reservoir for the jth mode. 

3. Solution of the Fokker-Planck equation 

To solve equation (2.6) we adopt the general method described in detail by Haken 
(1973a). First we must seek the fundamental solutions, or constants of motion hj ,  of 
the unperturbed equation 

Lo f = 0. (3.1) 

We then require that L be such that any function of the constants hj is again a solution 
of (3.1). 

We obtain the following constants of motion for L : 

The perturbation technique assumes K ~ ,  yi l ,  rj are much smaller than g, and involves 
the solution of(2.6)in the subspace ofvariables spanned by the h j .  Following Haken and 
Worhstein (1973) we assume q >> K ~ ,  y so that a further perturbation may be taken on 

If we assume a strong phase damping, the terms in ho may be dropped. This assump- 
tion also ensures that Lo has the desired property that any function of the hj is again a 
solution of (3.1). 

L ,  f = 0. 

In this case, the equation L ,  fo = 0 is then 



114 K J McNeil and D F Walls 

which has the solution (Haken and Worhstein 1973) 

fo = e-2h1iNf1(h2 ,  h 3 ,  . . .) (3.7) 
where f l  is to be determined according to the perturbation method. The Fokker-Planck 
equation (2.6) is converted to  one in the subspace spanned by the h j ,  giving 

where the G's are as prescribed in Haken (1973a). 
To eliminate hl , we insert the form (3.7) in (3.8), and integrate over hl . This yields 

where 

e(asB) = dh,G(u,B) exp( - 2hl / N ) ,  /? # 1 lom 
and 

a 
ah 1 

@ ' )  = JOm dh1G~*')-exp(-2hl/N). 

(3.9) is our final equation, which is to be solved for the desired system. 

(3.9) 

(3.10) 

4. Application to two-photon lasers 

4.1. Two modes 

Here we take the atomic de-excitation to involve the emission of two photons, into 
distinct modes. The interaction Hamiltonian is then 

Hint = hg(S-bfb4 + S'b162) (4.1) 

with the corresponding Fokker-Planck operator 

aD 

- cc + higher order derivatives in ul, u2 

The constant of motion besides h ,  and h,  is 

h3 = 1 ~ 1 1 ~ - 1 ~ 2 1 ~ .  

The Fokker-Planck equation (3.9) is : 
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with 

= JOm dhl d2u1 d2u2 d2u dD 6(hl -hl(u, D)) 6(h2-h2(u1, D)) 

x 6(h3-h3(u1, u2))f2")exp(-2hl/N) 

a(') = 
Q(3) = 2Kilu112-2K2b212 

where 

m = max(0,h3) 
(h - m) 

dx. e- 2 x 2 / N  
I(h2 7 h3) = s_ 

In most applications ii is vanishingly small, so we may set ii, , ii2 N 0. 
Hence (4.4) reduces to 
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(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

- x2)N exp[ - 2(h2 - R I ) ~ / N ]  + 2[(x1 - ic2)h2 + ~ ~ h ~ ] l ( h ~ ,  h3)  

(4.20) 

We anticipate h2 = nl + fD and h2 - h3 = n2 + fD - N1I2 around onset of lasing, 
so that for large N ,  we may set the upper integration limit in Z(h2, h3) to be 00, so that 
I (h2 ,  h,)  becomes (&N)'". Further, the terms K~ exp[ - 2(h2 - ~ I ) ~ / N ]  may be ignored 
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when compared with the other terms in (4.20). Hence (4.20) becomes 

which has the solution 

(4.22) 

provided K~ # 

obtain the full distribution, and then integrating over U and D : 
The distribution for the light field alone is obtained by inserting (4.22) in (3.7) to 

f1(n,, n2) = JlrexP(2d[-qln,-qZn,!+bl(l -Bl)n:+bz(l-Bz)n~+8Pnlnzl~ (4.23) 

where : 
d 

41 = -qz = (Do/N)(Ki -K2)/(K1 + K2) 

(K1 + K Z ) ~ / ( K I  - K z ) ~  

bj = ZKjlNYil 

bj = b j / ( b + ~ )  

b = 2(K1+ Kz)"/ 

p = w1 + K 2 ) -  1/ (W/l (b+C)) .  

c = 1/2N. 

Integration over mode 2 (say) gives the single-mode distribution : 

(4.24) 

f (n l )  = N exp[a;n, - bl(i -B)n:] (4.25) 
where 

a; = 2Do/N( 1 - 8 2 )  

= 2bl/(l - B z )  (4.26) 
fl = b/(b+c). 

Since K~ << yll in practice, B << 1, and hence (4.25) reduces to  the well known result of 
photon statistics for the usual one-photon laser (Risken 1965). An analogous expression 
is obtained for the distribution of the other mode. Equation (4.25) shows that in this 
theory for the two-photon laser, each mode separately exhibits lasing action of the usual 
t Y Pe. 

If K~ = K~ = K, say, the solution of (4.21) is 

(4.27) 

(4.28) 
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The above results apply equally well to  two-boson lasers where for icl # K~ the two 
bosons need not necessarily be of the same character. For example, a particular two- 
boson laser may involve the simultaneous stimulated emission of a photon and a phonon. 
Experimental descriptions of such lasers have already been given (see Johnson et a1 1963, 
1964, Johnson et al 1966, where further references are given). 

4.2. Single mode 

Here we consider the two photons to be emitted into the same mode. The interaction 
Hamiltonian is thus 

Hint = hg(S - + s + b2). 

The constants of motion of interest are 

h l  = I U \ ~ + ~ D ~  

h2 = lul2+D. 

The Fokker-Planck equation in the h2  subspace is 

h i  

I(h,) = e-x2/2N dx. 
J - w  

The solution of (4.32) is 

Around threshold, the K terms may be ignored. Further, 2~fih; 
that near threshold, 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

<< Y l/N, SO 

(4.38) 

Substituting (4.37) into (3.7) and integrating over D and U give the boson field 

(4.39) 
distribution 

where 
f(n)  = N exp[ii( 1 - ,B)n - 6( 1 - fl)n2] 

ii = Do/N 

6 = K/YllN 

c = 1/2N 

f l  = 6/(6 + c). 

For 6 << 1, (4.39) reduces to  the usual laser threshold distribution. 

(4.40) 
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5. Comparison with the one-photon laser 

In the limit K << yII << r,~ << g, the photon distribution in an ordinary laser is (Haken and 
Worhstein 1973) 

f (n)  = N exp(an- bn2) (5.1) 

where 

a = 2D,/N 

b = 4 ~ / y  11 N. 

b is the non-linear parameter, and a is the threshold parameter, with a = 0 (ie 

The mean at threshold for distributions of type (5.1) is 
oZ1 = w12) giving the threshold. 

and the threshold variance is 

The square of the relative fluctuation at threshold is 

1 2 
arhr - - 

(n);hr (in- l)+(Xb)"*' (5.5) 

The one-mode distributions for the lasers we have discussed have the same form as 
(5 .1) ,  but with modified parameters a and b, so that the threshold mean, variance and 
relative fluctuation will take the same form as equations (5.3) to (5.5). 

In the case of the two-mode two-photon laser, the single-mode non-linear parameters 
are the same as for the corresponding one-photon laser (ie one with the same y l l  and 
K, see equations (4.24) and (4.26)). Thus, for this two-photon laser, (n ) thr ,  d l h r  and 
qhr / (n ) thr  are the same as for the corresponding one-photon laser. 

In the case of the one-mode two-photon laser the non-linear parameter is one 
quarter that of the corresponding one-photon laser (see equation (4.40)). Thus (n)thr 

will be increased by a factor of two. f$hr will also be altered. Since b << 1, to a good 
approximation we may write 

d t h r  N --- - (; A): 
and 

alhr 

(n)thr 
N (in- 1)1'2. (5.7) 

According to equation (5.6), the width alhr is increased by a factor of approximately 
two. This result is not unexpected, since recent work on two-photon emission 
(Lambropolous 1967, McNeil and Walls 1974) shows that the two-photon emission 
process is noisier than the one-photon emission process. However, we observe that, 
under the approximation (5.7), the relative fluctuation is the same as that for the 
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corresponding one-photon laser. Thus the effect of damping is to inhibit the noise 
somewhat, and allow the production of two-photon laser light with no significant 
increase in relative noise over the one-photon laser. 

6. Conclusion 

We have shown that it is theoretically possible to obtain a photon field distribution for a 
multiphoton laser which has qualitatively the same form as the usual laser threshold 
distribution. This distribution function exhibits a close analogy with the distribution 
function describing the threshold region of a phase transition (Graham and Haken 
1970, De Giorgio and Scully 1970, Grossman and Ritcher 1971). Hence we may say 
that the separate field modes exhibit second phase transitions far from equilibrium in a 
like manner to the one-photon laser. In the case considered in this paper the order 
parameter is again the number of photons in the mode. 

In the two-mode two-photon laser we find no significant difference in the threshold 
means and widths compared with the one-photon laser, implying that the modes behave 
separately rather like the usual one-photon lasing modes. The single-mode two-photon 
laser exhibits an increase in variance and mean by a factor of approximately two at 
threshold, although the relative fluctuation b1hr/(n)thr shows no significant difference 
from that for the one-photon laser. Non-thermal light distributions may also be 
achieved for higher-order multiphoton lasers with a corresponding increase in the 
variance and mean of the single-mode distribution. 
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